If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5t^2+14t=0
a = -5; b = 14; c = 0;
Δ = b2-4ac
Δ = 142-4·(-5)·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14}{2*-5}=\frac{-28}{-10} =2+4/5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14}{2*-5}=\frac{0}{-10} =0 $
| -7x/3+6=-16 | | 8=5n-2+2 | | 30-5x=x-6 | | 4x+10+47+2x+3=180 | | 25/100=x/90 | | -12p+16=46 | | 32x-18+25x+10=180 | | 2a+18=6a+30 | | 4(x+5)=4x+10 | | 22=b+15 | | 6.4=-t/2.5 | | 9x-10+3x+90=180 | | 28,379.31-x=11,344.21 | | 2/3x=-30 | | 3-(4x/5)=(4+x)/5 | | n-0.5=-4.1 | | ⅓(12y-9)=-19 | | ⅓(12y-9)=-19 | | -6(x-3)=18 | | y=8+1/3 | | x-2.3=-4.6 | | 2y=y+55 | | 2x=3x-35 | | 1/2m=6=3 | | 2x+4+3x+3+x=55 | | 5(2x-x)=-2(1+3x) | | 5(x-5)+3=-47 | | 10x-2=7x+9 | | 9.4=-t/5.5 | | 3x+22=6x-2 | | 8x+2x-12=-3x+12 | | p-0.2=-1.3 |